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Abstract
The same-position scattering (SPS) of more than two electrons in a one-
dimensional model of two-band electrons with spin-exchange interaction is
discussed. The boundary conditions of three- and four-particle SPS are
given. It is shown that the conditions can be fulfilled by the two-particle
boundary conditions for the Bethe ansatz (BA) wavefunction. Consequently,
the definition of the BA wavefunction can be extended to those cases of more
than two particles occupying the same position. Therefore, unlike the case in
lattice models in which configurations with more than two particles at one site
are excluded in applying the approach, the BA is valid without the exclusion
of multi-particle SPS in the spin-exchange model. A relation between the
SU(2) × SU(2) symmetry and the BA equation is also indicated.

PACS numbers: 0220, 1130, 1155

1. Introduction

Recently considerable attention has been directed to the strongly correlated electrons with an
orbital degree of freedom due to the experimental progress related to 3d electrons [1]. For
one-dimensional single-band electrons, the Bethe ansatz (BA) approach has been successfully
applied to the δ-function interacting fermions [2] and the Hubbard model [3], respectively for
the spatially continuous case and the lattice case. There has been much theoretical work by
extending the BA to the degenerate systems [4–12]. As the single-band electron possesses only
two internal degrees of freedom, it does not involve the scattering of more than two electrons
at the same position when applying the BA. Whereas the existence of the orbital degree of
freedom increases the internal components of the electrons, and as the Pauli principle only
prohibits the spatially double occupation for electrons with the same component, the same-
position scattering (SPS) of n (n > 2) electrons with different components naturally should
be taken into account in degenerate electronic systems, but the original approach of the BA
only involves the two-particle scattering, and the factorization of a multi-particle matrix into
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products of two-particle S-matrices applies only to the transfer matrices which transfer the
amplitudes between different region sectors, not referring to the same-position multi-particle
scattering. In other words, the multi-particle SPS is not under the consideration of the original
BA. As a result, extending the BA to degenerate electron systems will encounter the problem
of consistence between the BA and the multi-particle scattering. If the BA wavefunction
does not fulfill the conditions required by the multi-particle SPS, it will not be the solution
of the degenerate system. This has been realized in the degenerate Hubbard model for which
the direct SU(n) extension of the SU(2) BA does not solve the configurations with multiply
occupied sites [6]. As a matter of fact, the theoretical works in the BA approach have been
based on the exclusion of more than two electrons at the same position [6–10].

In this paper we shall consider a one-dimensional system of two-band electrons with
spin-exchange interaction [11, 12]. We work out the three- and four-electron SPS conditions
and show that they can be fulfilled by the two-electron SPS equation in the BA wavefunction.
Therefore we conclude that the BA wavefunction can be exactly extended to multi-electron
SPS cases and the BA is exactly valid for the model.

2. The model and its symmetry

The Hamiltonian under consideration reads

H = 1

2

∑
m,σ

∫
dx

∂

∂x
C†

mσ (x)
∂

∂x
Cmσ (x)

+
c

2

∑
mm′σσ ′

∫
dx

∫
dx ′ δ(x − x ′)C†

mσ (x)C
†
m′σ ′(x

′)Cm′σ (x
′)Cmσ ′(x) (1)

where C†
mσ (x) creates an electron at site x with spin component σ and band label m (m = 1, 2).

Because of the spin-exchange interaction, the system has aSU(2)×SU(2) symmetry generated
by

Sz = 1
2

∑
m

∫
dx

[
C

†
m↑(x)Cm↑(x) − C

†
m↓(x)Cm↓(x)

]
S+ =

∑
m

∫
dx C

†
m↑(x)Cm↓(x) S− =

∑
m

∫
dx C

†
m↓(x)Cm↑(x)

T z = 1
2

∑
σ

∫
dx

[
C

†
2σ (x)C2σ (x) − C

†
1σ (x)C1σ (x)

]
T + =

∑
σ

∫
dx C

†
2σ (x)C1σ (x) T − =

∑
σ

∫
dx C

†
1σ (x)C2σ (x).

(2)

These operators {Sz, S+, S−} and {T z, T +, T −} obey the SU(2) commutation relations

[Sz, S±] = ±S± [S+, S−] = 2Sz;
likewise for the T operators. All these operators commute with the Hamiltonian so that the
system possesses the SU(2) × SU(2) symmetry.

3. Bethe ansatz and two-particle scattering

In the Hilbert space of N particles, the energy eigenequation in the first quantization is given
by [

−1

2

N∑
i

∂2

∂x2
i

+ c
∑
i<j

P ij
σ δ(xi − xj )

]
ψ = Eψ (3)
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where P ij
σ is the spin-exchange operator of electrons i and j . We adopt the following form of

BA wavefunction:

ψ(Q)
m1σ1...mNσN

(x1, . . . , xN) =
∑
P∈SN

A(Q)
mP1 σP1 ...mPN

σPN
ei

∑
j kj xPj (4)

which solves the eigenequation

−1

2

N∑
i

∂2

∂x2
i

ψ(Q) = Eψ(Q)

in the region RQ : xQ1 < · · · < xQN
with eigenenergy E = ∑N

i k2
i /2. On the barrier xi = xj

with the spin-exchange interaction, the connection condition is given by(
∂

∂xi

− ∂

∂xj

) (
ψ(Q1...j i...QN )

m1σ1...mNσN

∣∣
xj=xi+

− ψ(Q1...ij ...QN )
m1σ1...mNσN

∣∣
xj=xi−

)
= cP ij

σ

[
ψ(Q1...ij ...QN )

m1σ1...mNσN
+ ψ(Q1...j i...QN )

m1σ1...mNσN

]
xi=xj

(5)

where (Q1 . . . ij . . .QN) labels a region with Qr = i and Qr+1 = j for some r . Two
adjacent sectors (Q1 . . . ij . . .QN) and (Q1 . . . j i . . .QN) abut on the connecting boundary
xi = xj . The two-particle scattering relation (5) is obtained by integrating the eigenequation (3)
over a Gaussian box with the hyperplane xi = xj cut across. The amplitudes of the same
exp(i

∑
j kj xPj

) in (5) give the relation

(iks − ikt )
[
A(...j i...)

...miσi ...mj σj ...
− A(...j i...)

...mj σj ...miσi ...
− A(...ij ...)

...miσi ...mj σj ...
+ A(...ij ...)

...mj σj ...miσi ...

]
= cP ij

σ

[
A(...ij ...)

...miσi ...mj σj ...
+ A(...ij ...)

...mj σj ...miσi ...
+ A(...j i...)

...miσi ...mj σt ...
+ A(...j i...)

...mj σj ...miσi ...

]
(6)

where Ps = i and Pt = j in A
(Q1...ij ...QN )
mP1 σP1 ...mPs σPs ...mPt σPt ...mPN

σPN
. The single-valuedness of the

wavefunction on the boundary requires

A(...ij ...)
...miσi ...mj σj ...

+ A(...ij ...)
...mj σj ...miσi ...

= A(...j i...)
...miσi ...mj σt ...

+ A(...j i...)
...mj σj ...miσi ...

. (7)

From (6) and (7) one can find the two-particle S-matrix

Sij = (ks − kt )I
ij
σ − icP ij

σ

(ks − kt ) − ic

(ks − kt )I
ij
m + icP ij

m

(ks − kt ) + ic

SijA(Q1...ij ...QN )
mP1 σP1 ...mPs σPs ...mPt σPt ...mPN

σPN
= A(Q1...j i...QN )

mP1 σP1 ...mPs σPs ...mPt σPt ...mPN
σPN

(8)

where P ij
σ exchanges the spins of particles i and j in A

(Q1...ij ...QN )
mP1 σP1 ...mPs σPs ...mPt σPt ...mPN

σPN
while

P ij
m exchanges band indices of the electrons. It should be noted that ψ(Q1...ij ...QN )|xj=xi+

and ψ(Q1...j i...QN )|xj=xi− in (5) are respectively in two adjacent sectors (Q1 . . . ij . . .QN) and
(Q1 . . . j i . . .QN). The transfer matrix for non-adjacent sectors factorizes into products of
the two-particle S-matrices. The diagonalization of the N -particle transfer matrices combined
with periodic condition leads to the BA equations which determine the spectrum. Therefore,
the two-particle scattering boundary condition and the periodic condition are both conditions
that the BA is involved. However, the SPS conditions of more than two particles are required
for the system since the particles are two-band electrons. These conditions have not been
explicitly considered in the original BA, and the consistence between the BA and the additional
conditions should be verified to guarantee the exactness of the BA solution.

Before proceeding to the multi-electron SPS, we shall point out an interesting connection
between the BA and the Dynkin diagram of D2 Lie algebra which corresponds to the
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SU(2) × SU(2) symmetry of the present model. The BA equations [11] for the system
are written as

eikjL =
M∏

α=1

'1/2(kj − λα)

M ′∏
β=1

'−1/2(kj − µβ)

1 = −
N∏

j=1

'−1/2(λα − kj )

M∏
γ=1

'1(λα − λγ )

1 = −
N∏

j=1

'−1/2(µβ − kj )

M ′∏
γ=1

'1(µβ − µγ )

(9)

where 'l = [x + ilc] / [x − ilc] and {kj |j = 1, . . . , N}, {λα|α = 1, . . . ,M} and {µβ |β =
1, . . . ,M ′} are respectively charge rapidities, spin rapidities and the band rapidities. We write
out the BA equation in the form (9) so that it is easy to remember by means of the ‘Dynkin
diagram’ of D2 Lie algebra

v
k

N

f
�

M

f
�

M 0

where the dark dot is added to represent the charge rapidity kj , which also takes an angle of
120◦ relative to both the simple roots, r1 and r2, of D2 Lie algebra. The subscripts of ' in the
second and the third equations of (9) are then related to the covariant components of the simple
roots when the simple roots and the added vector (dark dot) are chosen as the non-orthogonal
basis, respectively, r1 = (−1/2, 1, 0), r2 = (−1/2, 0, 1). This connection exists because the
symmetry of the model is SU(2)× SU(2), the generators of which constitute D2 Lie algebra.
Such a kind of connection was noticed in the SU(4) Hubbard model [10].

4. Three-particle scattering at the same position

The continuity of the wavefunction of two particles at the same position has been used in
the BA; equation (7) is the corresponding amplitude relation. With the help of (7), it is easy
to verify the single-valuedness of the wavefunction with three or four electrons at the same
position:

ψ(...QrQr+1Qr+2...)
∣∣
xQr =xQr+1 =xQr+2

= ψ(...Q′
rQ

′
r+1Q

′
r+2...)

∣∣∣
xQ′

r
=xQ′

r+1
=xQ′

r+2

ψ(...QrQr+1Qr+2Qr+3...)
∣∣
xQr =xQr+1 =xQr+2 =xQr+3

= ψ(...Q′
rQ

′
r+1Q

′
r+2Q

′
r+3...)

∣∣∣
xQ′

r
=xQ′

r+1
=xQ′

r+2
=xQ′

r+3

(10)

where (QrQr+1Qr+2), (Q
′
rQ

′
r+1Q

′
r+2) ∈ S3 = {(ijk)} and (QrQr+1Qr+2Qr+3),

(Q′
rQ

′
r+1Q

′
r+2Q

′
r+3) ∈ S4 = {(ijkl)} are respectively any permutations of three specific

electrons ijk and four electrons ijkl.
To obtain the SPS condition of three particles i, j and k we need to integrate the

eigenequation (3) over an arbitrarily shaped volume; the intersecting line xi = xj = xk

goes through the volume in the subspace of xi , xj and xk . The arbitrarily shaped volume
can be cut into an ε-sized hexagonal prism of which a cross section is shown in figure 1;
the integration of the eigenequation over the part outside the prism automatically cancels due
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Figure 1. A cross section of the hexagonal prism in the three-dimensional subspace of x1, x2 and
x3. The centre axis of the prism is along the intersecting line x1 = x2 = x3, and the labels of the
three interacting particles ijk are set to be 123.

to (5), so it is sufficient to consider only integration over the prism. Setting the size parameter ε
to be infinitesimal and keeping the lowest order of ε in the expansion of the Gaussian integral,
we find the following equations required by three particles at the same position:(

∂

∂x1
− ∂

∂x2

) [
ψ(Q1...231...QN ) − ψ(Q1...132...QN )

]
x1=x2=x3

+

(
∂

∂x2
− ∂

∂x3

) [
ψ(Q1...312...QN ) − ψ(Q1...213...QN )

]
x1=x2=x3

+

(
∂

∂x3
− ∂

∂x1

) [
ψ(Q1...123...QN ) − ψ(Q1...321...QN )

]
x1=x2=x3

= 4c(P12
σ + P23

σ + P31
σ )ψ(Q1...123...QN )

∣∣
x1=x2=x3

(11)

where we have set the three particles ijk to be 123. The ψ(Q1...123...QN )|x1=x2=x3 on the right-
hand side of the above relation can also be replaced by a wavefunction with another permutation
of 123 according to the relation (10) of single-valuedness. On the left-hand side, it should be
noted that the pairs of wavefunctions in the same bracket are not of neighbouring sectors as
in (5).

We find the condition equation (11) can be fulfilled by the two-particle connection
equation (5). As one can see, the relation (6) is independent of the particle coordinates, so it
does not affect the cancellation of the amplitudes in (5) if we set a third adjacent particle k in
the same position as the two particles on the barrier xi = xj while keeping all the permutation
notation Qs in the A(Q)s unchanged. Hence, (5) can be extended to three-particle occupancy:(

∂

∂xi

− ∂

∂xj

) [
ψ(Q1...j ik...QN ) − ψ(Q1...ijk...QN )

] = 2cP ij
σ ψ(Q1...ijk...QN )

(
∂

∂xi

− ∂

∂xj

) [
ψ(Q1...kj i...QN ) − ψ(Q1...kij ...QN )

] = 2cP ij
σ ψ(Q1...kij ...QN )

(12)



3944 Z J Ying et al

Figure 2. The region inside the triangle in the y − y′ plane with fixed ω belongs to sector
(Q1Q2Q3Q4), ω > 0.

where xi = xj = xk . Additionally the wavefunctions on the left-hand side are still defined on
neighbouring regions as in (5). We split the differential operation ∂/∂x1 − ∂/∂x2 in (11) to
be (∂/∂x1 − ∂/∂x3) + (∂/∂x3 − ∂/∂x2) and similarly for the others; the left-hand side of (11)
becomes((

∂

∂x1
− ∂

∂x3

)
+

(
∂

∂x3
− ∂

∂x2

)) [
ψ(Q1...231...QN ) − ψ(Q1...132...QN )

]
x1=x2=x3

+

((
∂

∂x2
− ∂

∂x1

)
+

(
∂

∂x1
− ∂

∂x3

))
×[

ψ(Q1...312...QN ) − ψ(Q1...213...QN )
]
x1=x2=x3

+

((
∂

∂x3
− ∂

∂x2

)
+

(
∂

∂x2
− ∂

∂x1

))
×[

ψ(Q1...123...QN ) − ψ(Q1...321...QN )
]
x1=x2=x3

. (13)

In terms of (12), equation (13) is equal to 4c (P12
σ + P23

σ + P31
σ )ψ(Q1...123...QN )|x1=x2=x3 , i.e.,

exactly the right-hand side of (11). Therefore we have proved that the condition required by
three-particle SPS is actually satisfied by the connection equation of two-particle scattering in
the BA.

5. Four-electron scattering at the same position

Now let us turn to the case of four particles at the same point. For the sake of notation simplicity,
we only consider four electrons: the N -electron case can be generalized straightforwardly.
Similar to the analysis in three-electron scattering, it is sufficient to obtain the four-electron
scattering condition by calculating the integral of (3) over an ε-sized Gaussian box with centre
axis x1 = x2 = x3 = x4. A vector in the sector of (Q1Q2Q3Q4) can be built on another set
of orthonormal bases (refer to figure 2)

rQ1Q2Q3Q4 ≡ xQ1eQ1 + xQ2eQ2 + xQ3eQ3 + xQ4eQ4

= ωfQ1Q2Q3Q4 + hΓ + ygQ1Q2Q3Q4 + y ′g′
Q1Q2Q3Q4

(14)
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where the basis vectors are

gQ1Q2Q3Q4 = eQ1 − eQ2 − eQ3 + eQ4

2
g′
Q1Q2Q3Q4

= eQ1 − 3eQ2 + 3eQ3 − eQ4√
20

fQ1Q2Q3Q4 = −3eQ1 + eQ2 − eQ3 − 3eQ4√
20

Γ = e1 + e2 + e3 + e4

2

(15)

and Γ is the direction vector along axis x1 = x2 = x3 = x4. The boundary equations at
xi = xj can be expressed in terms of fQ1Q2Q3Q4 , Γ, gQ1Q2Q3Q4 and g′

Q1Q2Q3Q4
according to

the above relations. In the (Q1Q2Q3Q4) sector of the Gaussian box the inwards normals
of the intersecting hyperplanes xQ1 = xQ2 , xQ2 = xQ3 and xQ3 = xQ4 are respectively
nQ2Q1 = eQ2 − eQ1 , nQ3Q2 = eQ3 − eQ2 and nQ4Q3 = eQ4 − eQ3 . It is easy to see that
fQ1Q2Q3Q4 ·n21 = fQ1Q2Q3Q4 ·n32 = fQ1Q2Q3Q4 ·nQ4Q3 . Setting ω = ε, we have a hyperplane
which can be the side hypersurface of the Gaussian box in the (Q1Q2Q3Q4) region; fQ1Q2Q3Q4

is the outwards normal direction vector. We also set the size parameter ε to be infinitely small,
carry out the expansion in the orders of ε and keep the lowest order in the integration of (3).
After a careful calculation, we find the conditions required by four-particle SPS are

−1

2

(
5

18

) ∑
Q∈S4

(
3

∂

∂xQ1

+
∂

∂xQ2

− ∂

∂xQ3

− 3
∂

∂xQ4

)
ψ(Q)(x, x, x, x)

= c

2

∑
Q∈S4

(
5

6
PQ1Q2

σ +
10

9
PQ2Q3

σ +
5

6
PQ3Q4

σ

)
ψ(Q)(x, x, x, x). (16)

Also the above four-particle interacting condition can be satisfied by the two-particle
connection equation (5). Relations (12) are extended to(

∂

∂xi

− ∂

∂xj

) [
ψ(Q1...j ikl...QN ) − ψ(Q1...ijkl...QN )

] = 2cP ij
σ ψ(Q1...ijkl...QN )

(
∂

∂xj

− ∂

∂xk

) [
ψ(Q1...ikj l...QN ) − ψ(Q1...ijkl...QN )

] = 2cPjk
σ ψ(Q1...ijkl...QN )

(
∂

∂xk

− ∂

∂xl

) [
ψ(Q1...ij lk...QN ) − ψ(Q1...ijkl...QN )

] = 2cPkl
σ ψ(Q1...ijkl...QN )

(17)

where xi = xj = xk = xl . The left-hand side of (16) is rearranged by splitting the differential
operators and using (17) respectively:

−1

2

(
5

18

) ∑
Q∈S4

[
3

(
∂

∂xQ1

− ∂

∂xQ2

)
+ 4

(
∂

∂xQ2

− ∂

∂xQ3

)

+3

(
∂

∂xQ3

− ∂

∂xQ4

) ]
ψQ(x, x, x, x)

= 1

4

(
5

18

) ∑
Q∈S4

[
3

(
∂

∂xQ1

− ∂

∂xQ2

) (
ψ(Q2Q1Q3Q4) − ψ(Q1Q2Q3Q4)

)

+4

(
∂

∂xQ2

− ∂

∂xQ3

) (
ψ(Q1Q3Q2Q4) − ψ(Q1Q2Q3Q4)

)
+3

(
∂

∂xQ3

− ∂

∂xQ4

) (
ψ(Q1Q2Q4Q3) − ψ(Q1Q2Q3Q4)

)]
= c

∑
Q∈S4

[
5

12PQ1Q2
σ + 5

9PQ2Q3
σ + 5

12PQ3Q4
σ

]
ψ(Q1Q2Q3Q4) (18)

which becomes precisely the right-hand side of equation (16). Thus we have proven that the
four-electron SPS condition is satisfied by the conventional BA wavefunction.
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6. Concluding remarks

In the above, we have worked out the conditions required by scatterings of three and four
electrons at the same position and proved explicitly that they can be solved by the two-particle
connection equations in the BA. The configurations with more than four particles at one
spatial point are excluded from the present model by the Pauli principle: the antisymmetric
wavefunctions vanish in such cases. Therefore the BA is valid for spin-exchange two-band
electrons without the exclusion of multi-particle SPS. Unlike the degenerate Hubbard model,
the BA wavefunction is confirmed to be the solution of the spatially continuous system and
the definition of the BA wavefunction can be exactly extended to those cases of more than two
particles occupying the same position.
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